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1.1 introduction

In this chapter the idea of a definite integral is extend
to multiple integrals (double & triple) of functions of
two or three variable. These idea are then used to

compute volume, mass, etc.

1.2 Double Integrals

In general, single integral when there is one
variable and it can be described as

AY

j x)dx = lim Z(fﬂ 1 |

b6 b

In a similar manner we consider a function f of
two variables defined on a closed rectangle.

ij(x y)dA = llm ZZf(xt] yij)A [ Z/

i=1j=1




1.2.1 Properties of Double Integrals

1- f f [f(x,y) +g9(x,y)]dA = g fx,y)dA + ﬂ g(x,y)dA
R

2- [ f Cfxy)dd=C [ f f(x,y)dA where Cisa constant

R R

J-ifR=R, +R,
| s | s | rayes

4—Area=A=U A dA=dxdy = dydx
R

5-volume =§ = J f f(xy)dA wheref(xy) =12

R



Example 1.1

3 2 2 3
Evaluate
j J tydydx  (b) f J x*y dxdy
) 1 10

Solution

(a)




Example 1.2
Evaluate H ysin(xy)dA  whereR=1[1,2] x [0,7]

R

Solution

ﬂ ysin(xy)dA = L H L | ysin(xy)dxdy = L TI[—t:.'.:!s(.::y)] idy

H.W.

2
[ J ysin(xy)dydx
1

" 1
= J (~cos2y + cosy) dy = —Esin2y } siny]g =
u



1.3 Double integrals over general regions

In double integrals, it can be integrate a function f not
just a rectangles but also over region D of more general
shape.

1.3.1 Type one

The plane region D is said to be type one if it lies between
the graph of two continuous functions of x that is

- et
e ———
o e
—_—
-
—

y=g,(X) y=g,(X) y=g,(X)
D
L Y=091(x) | . y=g1(X) f I y=0g,(X) :'
a b x a b x a b X



1.3.2 Type two

The plane region D is said to be type two if it lies
between the graph of two continuous functions of y
that is

D={(xy)e<y<d,  h(y)<x<hd(y)

[[ ox)aa= f d L ’:j)f(x, y)dx dy

D

i
>




Example 1.3

(x+2y)dA

Evaluate where D is the region bounded

by parabolas

Solution )= sz andy =1+ xz
The intersection points of the two
parabolas

=14+xt s xt=1-2=¥1

D:umﬁ—1£x£1£f£y£1+xﬂ(
1,2

| 1422

H(xﬂy)dA: [ [ (x+2y)dydx

-1 24

[ et T | 04027500 - 2
-1 2x -1

-+ x4+ ) =—2 -—+- +—+1x]

_f 3.4 2, ¢ 1R
iy 57 43 2 15



Example 1.4

Find the volume of the solid that lies under the parabola 7 = s +y

2

and above the region D in the xy-plane bounded by the line y=2x

and the parabola y = y*
Solution
To find the intersection point

y

There are two ways to solve this probl l 0.4
The first way a
2=x" - 1=0andx=2 =Y .
D={(ry<r<2at<y< ) :

2 A :
(2L 42\ 31 = 2 1 2 '
V—ﬂ(x +y)dA_”(x +9) dyd —

0 42
2 3 2 3 2\3
= 2 y_Zx :J 2 @_zz_ﬂ
L[xy+3 xzdx ﬂ[x(ZxH s ET - dx
_Jz -2 14 . o2 T2 216
G T TS T T s e o 3




The second way

1
x=iy=\/} - y=0andy=4

2 5 27 134]4 216

=—V2+—-V2 —— = —
BT 0T 38

Practices
1- Evaluate
parabola y=2x+6

¥4\ here is the region bounded by y=x-1 and the

2- Find the volume of the tetrahedron bounded by the planes x+2y+z=0
, X=2y, x=0 and z=0



1.4 Reversing the order of integration

In some cases, it is necessary to reverse the order of
integration and must be also change the boundary of

it.
Example 1.5

Reverse the order of integration
x=1y=1+x x=2y=4-2x

I:f f xdydx+J’ J' x dydx

x=0 y=0 x=1 y=0

We can divide the integration into two parts

y=1 x=1 ¥l =1 y=2tg
= [ [ xdxdy + [ [ xdxdy [ [ xdxdy
y=0 x=0 y=1 x=y-1 y=0 x=1
—
dA=dxdy




y=1x:i%z
I= J’ J’ x dxdy +
y=0 x=0
Practice il
Reverse the order of integration
_1
y_ﬁxzsin_ly y=1lx=cos 1y
I = dxdy + dxdy
y=0 x=0 _1 x=0
"z
Example 1.6
x=0 y=1
' 1 X
Find I= f f —siny cos—dydx
y y

x=—1y=—x



Solution y
To reverse the order of integration
y=1 x=0
1 X y=1
= f —siny cos—dxdy .
y y
y=0 x=-y New ——
1 di=drdy
J’ mysmfl 0 dy
o yl=y <
i 1 o = by
= f [0 - siny sin(—1)|dy = f sin(1)siny dy
y=0 y=0
. I . .
= sin(1)(-cosy]) . —sin(1)cos(1)+ sin(1) 1 = 0.386 unit volume
Practice
Find
y=4 x=2

I—J‘ fedxdy
J’Ux



1.4 Double integral in polar coordinators

Suppose that we want to evaluate a double integral
where R is the region. From the figure we can find the
relations between the polar coordinate (r, 0) and
rectangular coordinate (X, y) by the equation.

f(x,y)dA

rt=x 4yt x=rcosh,  y=rsing

If f IS continuous on a polar rectangle R 31
P JeRd P(r,0)=P(xy)
a<r<b, a<0<fBwhere0<f-a<ln
y

B rb
ﬂ f(x,y)dA =f J’f(rcos 0,rsinf)rdrd6 R

a va 9 X X
R

dA =rdrdd




Example 1.7

Evaluate g(3x+4”2)d‘4 where R is the region in the upper
half-plane bounded by circle 24

=1 and x% +
Solution ty s Y=

={(xy)y201<2+y* <4} A
R={(r0)0<0<m1<r<2)

f f (3x+4y*)dA m
. | L 15

m (2
= f f (3rc059+4r25m29)rdrd3
0 1 R 12

T 2
=J’ J’ (3TZCOS9 + 4r3sin29)drd9
0 J1

o
T 2
= J r3cosd + rtsin®0] 1d9 = f(’lcosﬂ +15sin*0)do
0
0

bl

15
f(?’cos& +—(1 cos 28))
0

[ 7e0s8+ 21— cos 26) |d8 = 7sing + 2 - 2 inag] "= 7
= cos 2 cos = /SIh 2 45'”1 0— 2

o — N



Example 1.8

Find the volume of the solid bounded by the plane 7 = )
and the parabola z=1-x*-y*

Solution ,
whenz=0,x"+y! =1
D={(r8)0<0<2m0<r<]

[ f (1-2*-y")dA = L ’ fﬂ 1(1 -18)rdrdd

”."'4

4

V

T

= — unit volume

V=
2

1
dQJ’ dr—Zn
0



1.5 Triple Integral
Triple integral can be defined for the three variables

functions I:J'J'J'dv
G

dV : volume of an element
dV=dz dA=dz dx dy =dz r dr do
G: bounded volume

Tripple integral can be solved as

fi ([[ar)a

Triple integral can be classified into two types

1.5.1 Triple integral over a rectangular box
Which can designed as

s
A B




Example 1.9

2
Evaluate the triple integral m YAV \where B is the
rectangular box given by

B={(x,y9,2)0<x<1,-1<y<20<z<3}

Solution

We could use any of the six possible order of integration if
we choose to integrate with respect to x then y and then z as

z=3 ry=2 rx=1
I=]|] xyz2dV = J f f xyz*dzdxdy
x=0

B z=0 Yy=-1
3 r2
A

—f y27?
o | 4

xtyz
2

3 (24,2
Z
fy—dydz
B

1 _
Odydz = fo

3 135

0 12

2 _szzd _57°
4%7) 7Y T




1.5.2 Triple integration over non rectangular
box

It can be defined an integral over a general bounded
region E in the three dimensional space (a solid) by

much the same procedure the used for double integral.

1 oo Z

E={((x 3 2)]((x,y)eD,uy(xy) <2< 0y(x, )}

Where D is the projection of E on xy-plane as shown in the
figure and notice that the upper boundary of the solid E in the
surface equation 7= (X, y) and the lower boundary is the
surface equation z =, (x, y)

It can be shown that if E is a type one region aiven by the
equation ;

JIEf f(x,y,z)dV = Jl [fuz{x’y)f(x, y,z)dz

dA

uy (x,y)

E={((xyz)lasxshg )<y gy czsumxy) -

ﬂ f(x,y,2)dV = f ’ f e f uz(x’y)f(x,y,z)dzdydx

E g1(x) Jug(xy)



If on the other hand, D is a type two plane region

Z

E={((xyz)lcsysdhyy) <xshy(y)u(ny) £z<m(xy)

d chyy) (uz(xy)
f(xy,2)dV = J J [ f(x,,2)dzdxdy
[ e “hy(y) “w(xy)

Example 1.1JQ

Evaluate fE zdV where E is the solid tetrahedron
bounded by four planes x=0, y=0, z=0 and x+y+z=1
Solution

Upper Z =uy(x,y) =0

lower Z = u,(x,y)

E={xy2)0<x<10<y<t-20<z<1-x-9)

1 1z (1-x-y 1-x 2
de=J J J zdzdxdy = J J —
0/o o 0l 2

1

= — yunit volume
0 4

1-x-y
0

—
[ —

dydx

e | ey

1

:ELI( )3dx-6

(1-0"4

4




The solid region E maybe take other fori—

E={((xy,2)]((5.2)eD,wy(y,2) € x <15y, 2)

z=hy(y)
- LY, (}’,Z) ] LEM;]
f(x:yﬁz)dv = [ f(JC,y,Z)dx dA umy.zj
E D - Hl(y,Z) ] ’ . .
d ~h2(y)  u2(y2)
= J f f f(x,y,z)dxdzdy
¢ ‘hi(y) Jul(yz)
And also

E={((xy,2)]((x2)eD,wy(x,2) <y Sy (2]

]|

E D

[”

dA 2=g,Y

Uy (x,2)
[ fayat

ug(x,2)

02(x) pud(xz)
[ [ f(x,y,2)dydzdx
g1(x) Jul(xz)



Example 1.11

Evaluate fff vx%+z2dv where E is the region bounded by
the parabohc y = x* +y* and the plane y = 4

Solution y ‘
It can consider D onto the xy-plane 24)
270, y=4 P
From
</

y= x2+y S1=1/y-x? X/R
ﬂ] y—x2dV = J.J.fi::x Jy — x2dzdydx

It hard to integrate

The projection plane can be changed ,
4
V= ﬂf x2+zde:flf) U \ x2 +zzdy‘d;1 z=+Vd— 22
E +z

2472
ﬂ 2 -2l -2
=" (4-x*—Z*) Xt +zEdA = (4 —x* — 2%) /x* + 22 dzdx
D P —
2

~2/-4-x2

PR

z=—V4—x*

It also hard to integrate
It can convert to polar coordinate in xz-plane

x=1cos6, 7=rsinb

V=" (4—x"—z°)/x*+z*dA = (4 —r*)rrdrdf
D 0 0
4

2w 2
V=J dﬂf (4r* — 1) drdf = 2 |— — —
0 0 '3 5

2 128
0- 15 "




1.6 Triple integral in cylindrical coordinates

Let point P is represented in Cartesian coordinates as
(x,y,z) and it can be represented in cylindrical coordinates

as (r,0, 2)
To convert from cylindrical to rectangular coordinates

x=rcos@ y=rsind z=1

While, to convert from rectangular to cylindrical

r=/x2+y 9=tan‘1i—’ Z=1 |

g \y
X T




1.6.1 Evaluating Triple Integral with cylindrical
coordinates

Suppose E is a type one region whose projection D on the
xy-plane is conveniently described in polar coordinates as

shown
E={(x,y,2)|(x,y)eD,uy(x,y) <z <u,(x,y)}

Where D is
D={(r,0),a<8<ph(0)<r<hy0)}

To find the volume

I sy 4 [ rays

E uy(x,y)

dA

But, it can be evaluated by polar c

dV =rdrdfdz

B +hy(8) uylrcosBrsing)
V=] flxyz2)dV= J J J f(rcos@,rsind,z)rdzdrdf
a “h

1(6)

uy (rcosB.rsing)

E



Example 1.12

2 422 L2
Evaluate J. J. J. (xZ 1 yz)dzdydx
Y Mg N e

Solution
E= [(x,y,z)l—2£x£2,—ﬂ£y£\f4—xz,\fxz+yz iziZ]

The region has much simpler describing in
Cylindrical coordinates

E={r02)0<0<m0<y<dr<z<l)

2 2
f f rérdzdrzdd
0 /r

I:ﬂg (x2+y2)dV:f

0

oot 1, 1 2;15
=| d0| r@2-r)dr=2 [—2——2 =—
L Lr( r)dr nzr H 0 5n



1.7 Triple Integral in Spherical Coordinates

Another useful coordinate system in three dimensions the
spherical coordinate system as shown in the figure. It
simplifies the evaluation of triple integrals over region
bounded by sphere or cone. z

AP (p. 0. )

/ \
X H"‘~)L_\ ’X-’/ Yy
TV (x, )

The spherical coordinates system is especially
useful in problems where is symmetry about a point
and the origin is placed at this point as

Z Z

(7 AN
AN S

The relationship between rectangular and spherical coordinates
according to figure above
z=pcos) r=psind butx=rcosd y=rsind

X

So to convert from spherical to rectangular coordinates

x = psinfcosd, y = psindsind. z=pcosd, p*=x*+y*+ 2



1.7.1 Evaluate triple Integrals with Spherical
Coordinates

E={(p80)a<p<hago<pe<o<d]

dV = dp(pd0)(psindd) = p*sinddpd6dp z

Il faoa

E

psin0de

d B b
=J J J f(psindcosb, psin@sind, psind) p*sinddpdfdd

Example 1.13 | H
Evaluate 2 W do y
ﬂ‘f E{ z+‘z+32}3dlg ot

Solution “p pd@

B={(xy)| +yH4r <]

B={(p00),0<p<10<0<m0<0<m)
R

Z in -1 3
m e gy ff f e p2sinddpdedo
040 “0

B



T 2m 1
= f sin@dg f do f p*efdp
0 0 o

m 3] 1
= [-cos(] 0 2 [—'epjl 0" 2.3m unit volume

Practice 3

Use spherical coordinates to find the volume of the solid

that lies about the cone and below the sphere
1=ty

Hifty EdtaBions of some geometrical shapes

Sphare: (x—h)* +(y—k)*+(z-02=a* hk1larethe center and ais thr radius

. . xz yz zz
Ellipsoid : Stnts=1 (@>b>c)
2
Paraboloid : z = " i 7

Cone: z=1"+)"

Cylinder: 1* +y" = a*forallz 2452 = g¥opally ¥ +2°=0*foralls



Sheet No (1)

1- Evaluate

31 4

(a) f f 1+ 4xydedy  (b) f frsinzﬂ dodr () f ZG+ i) dydx

0o 11

2- Calculate the following double integrals

Il

(a) ] (6x*y* - 5y")dA R={(xy)|0<x<3,0<y<1]

(b)f{? cos(x +2y)dA R:[(x,y)lﬂixin,{li_:ygf]

(c) ﬂ}; xsin(x+y)dA R= lﬂ,g] ¥ l{],g]

3 (a) Find the volume of the solid that lies under the plane
3x+2y+z=12 and above rectangular r = {(x,y)\o <x<1,0<y< g]
(b) Find the volume of the solid in the first octant bounded

by the cylinder z=16-x* and the plane y=5
(4) Evaluate

2

4 v'l-'-'" 1 x

@[y ) j (1+12y) dyds
00 0 x

5- Evaluate the double integrals
I ) .

(a) ) xdd D={(xy)|0<x<m0<y<sinx

(b) : yedd D={(xy)l0<y<40<a<y)



6- Sketch the region of integration and change the order of

Integration
3 11 .
LS
0z

3y

4z

” flxy) dydx ( f} f(xy)dxdy (df

7- Find the volume of the solid that lies under the
paraboloid % -I-y2 =2x above the xy-plane and inside the
cylinder z=x%+y?

8- Evaluate the triple integrals

1 z x+z VIT x xZ

(a]J’J J 6xz dydxdz (b]f J’J x*siny dydzdx

000

O- Use the triple integral to find the volume of the given
solid
(a) The tetrahedron enclosed by the coordinate planes and
plane xtyt+z=4
(b) The solid bounded by the cylinder Y= x and the plane
z=0z=4andy=9

10- Evaluate fg Jx2 +y2av where E Is the region that lies
inside the cylinder x*+y*=16 and between z=-5andz=4

11- Find the volume of the solid that lies within both the
cylinder x*+y*=1 and the sphere 42 ty 4t =

Il z
12-Evaluate p X *Y'+72) 4V where B is a ball with
center the origin and radius 5.

1:% Evaluate £ zdV where E lies between the spheres
'I'y bt=1 and x*+y*+7-=4 inthe first octant



Chapter two

Laplace Transform




2.1 Introduction

The Laplace transform takes a function of time and
transforms it to a function of a complex variable s.
Because the transform is invertible, no information is
lost and it is reasonable to think of a function f(t) and
Its Laplace transform F(s) as two views of the same
phenomenon. Each view has its uses and some features
of the phenomenon are easier to understand in one
view or the other.

The Laplace transform of a function f(t) is defined by
the integral

8]

F(s) :J' e St f(t)dt
0
Also it can be written as
F(S) = LIf(®)]

This integration is called Improper but mathematically
can be represented as

0o h
J; e st f(H)dt = AL@D U; e Sf(t)dt]



2.2 Laplace transform for some functions

The most function is the exponential (e®") and to
transform it by LaplaceL[e®] .

Lle?] =J’ et f(t)dt =f e St edt
0 0

1

5 —

1

1
E—{E—a:]tl =2 _ [E—m o El]] —
0 s —a s —a

_ f e—(s—a) dr — —
1]

L[e] = p— This is valid for s > a

Is the special case

a=0then

e =e’=1

1 1
L1 = — ;[:[1] =—, §>a
[1] s—0 s _ s
Another important function
n
L[t"] n>0 ()

Co

L[t"] = J;me‘“ f(t)dt :J; et t"dt

Integration by parts, we get

udv = uv — | vdu

t" (— 19_“) o _ ) (— 13_“) nt"dt
S 0 J, S




0-0+ Eﬁ[t"‘l]
S

L[] = g £[en1]

Keep going !
£ = ] ==

L[] = £fen ] = “("S; D pen2) = ... = :—; L[]
L[t"] = S:Jr!l n>0

« Letfind cosat

L[cosat]| = f

0

oo

e st f(t)dt = J’ e St cosatdt
0

Integrate by parts

udv = uv — J‘ vdu

00 “1
e *'—sinat| —J' —sinat(—se ") dt
a 0 0 a

1 1, . s~ .
[—e msmoo]— [—e Sm[}] +—J’ e Stsinat dt
a a al,

1 1 0
g o
S S

R elent
+ Sﬁ[t" ]



S ()
0—U+—J’ e *tsinat dt
alo

S Co
L[cosat] = —f e “'sinatdt
alo

Another integration by parts
« 1 “ 1
J’ e *!sinat dt = e *'(——cos at) Im — f ——cos at(—se ) dt
0 a 0 0 a

1 1, 1 s[7
= |—e “cosw —[——e cos0|—— | e S'cosatdt
a a I al,
_ s|1 s |
Llcosat] = — \— — —L[cosat]
ajla g
: s S
Llcosat]| = i Eﬁ[cosat]

s? S
Llcosat] + Eﬁ[cosat] = —

P
2
S S
Llcosat)] (1 i@) =3
___a* _
[cosat] = 2 p
1+ ) a<|1+ 2
S
L t| = 0
[cosat] G2+ ad) ,§ >
Practice

L[sin at]



Table of some essential transforms

Functionf(t) |Laplace transform(F(s)
eat ) 1
L[e™] =
s—a
1 1
Li1] =-
=5
" n!
£[tn] = gntl
cos at ol
L t] =
[cos at] =2 "& o2
sin at -
L t) =
[sin at] 71 a2
Example 2.1
Transform the function ¢3 by Laplace.
Solution

31 3x2x1 6

— 3| — — —
L[f(t)] - J':[‘L‘ ] T g3+l T 4 g4 F(s)
Example 2.2
Transform f(t) = sin 2t to the F(s)
Solution
2 2

LIf(@)] = Llsin 2t] = = =
Ul [ ] st+a* s2+22 st+4



Example 2.3
Transform the function f(t) = 5e% — t* by Laplace.
Solution

LIf(0)] = L[5e? —t*] = fme—” (5e%t —t*)dt

0
= [ et(serar— | e (t)ar
0 0

= £|5e?| - £[t*] = 5£|e?| - £[t*]

1 4 5 24
~ 5 =F(S)

=95 — =
*5—2 S5 s—-2 s

Example 2.4
Transform f(t) = t3 — 5 + cos 2t to the F(s)
Solution

LIf®] = L[t — 5+ cos 2t]

= L[t?] - £[5] + £[cos 2t]

2! 1 S
LIf(D] =Sz+l—5=+=§+sz+22
5 S

2
F(s) = — — —
(s) s3 S+Sz+4

Practice Transform these functions by laplace

(@) f(t) =3 + e?* + sin 5t (b) e ?* — 14t



2.3 Inverse Laplace transform

As it i1s known, the main purpose of Laplace transform
IS to convert the regular function into a new function
could be solved easily. The result also could be
converted back to the regular form as.

Llf @] £ F(s)]

fit) — F(s) — f(©®)

The table of Laplace transform can be added to it
Inverse column.

Function f(t) Laplace transform F(s) |Inverse Laplace transform
f(t)
et £[eat] — 1 £—1 ’ 1 — L
S—da S—a
1 1 1
L[1] =- £t [— =1
S S
t" ! n—1
L[] = —— = 1] __t
S s*l (n—1)!
cos at S -1 S ]
Llcos at| = L = cos at
[ | s2 -Eaz 521+ a? ’
sin at .
Lisin at| = -1 = —si
| ] $2 + a2 L Lz n a2] asm at




Example 2.5
Find the inverse transform of  F(s) =

Solution s —2
f@) =e*
Example 2.6
Find the inverse transform of F(s) =
Solution 2s +1
1
F(S) = = =
2s+1 2s—(—-1) (.1
_ 2 (-2)
1 1 1 1
t) ==L71 =—e 2¢
fO =5 S_ (_1) 5 €
i 2/
Example 2.7
Find the inverse transform of F(s) = o
Solution
1 t3 t3
t) =2£"1 —] =2 = —
f@® s 3x2x1 3
Example 2.7
Find the inverse transform of F(s) =
- s?+3
Solution
ft) =21 ‘ — sinV3t
s + (\/_)

6 1

Practice: Find F =L [
(s) = s+ 2 52+3+S5



2.3

Differentiation property of Laplace transform

To find Laplace of deferential function as

Llx/()| =£ [%] = L[D,]

That should be

Co

Llx/(®)]| = J; e Stx/(t)dt

By integration of parts,

L

x/(t)] = £[D,] = sL[x(t)] — x(0)

L[x//(#)] = £[D,?] = s2L[x(£)] — sx(0) — x/(0)

£[D*] = s3L[x(®)] — s?x(0) — sx/(0) — x// (0)
Example 2.8
Solve the differential equation by Laplace transform

dx

E =t ,x(0)=2
Solution

dx

_— — »{ —

Tt D, =x/(t)=t

Bt take Laplace for both side

L[D,] = L[t]



1!

sELx(0)] - x(0) = 7
Soix)] -2 -

Llx()] = = +2

S
H=L1|=+=
*() L3 + S]
t3_1
x(t) = (3—1)!

£2
x(t) :;+ 2

+2x1

Example 2.9

Solve the following differential equation by using
Laplace transform

D3x—D*’x=0 ,x(0)=x/(0)=x//(0) =3
Solution
D3x—D?’x=0
By taking Laplace for this equation
£[D3x] - £[D,*] = £[0
(SSL[x(t)] — s2x(0) — sx/(0) — xff((}))
— (s2Llx(®)] - sx(0) - x/(0)) = 0
3L[x(t)] —3s* —3s—3 —s’L[x(£)]+3s+3 =0

3L[x(t)]—s*L[x(t)] —3s% =



Lix@)(s* ) =357

Lix@®)] =

Lx(@®)] =

x(t) = £71 Li 1]

x(t) = 3et

Example 2.10

Solve the following differential equation by using
Laplace transform.

x// —x=e% ,x(0)=0x/(0)=1
Solution
y.{.x' — y = Bzr

sZL[x(t)] — sx(0) — x/(0)—L[x ()] — x(0) = ﬁ

SLix()] —0—1—L[x(t)] -0 =

s—2
Llx(®)](s* - 1) = j: ;
s—1 L
Llx(@®)] = s-2)(s2—-1) (s-2)(s+1)
1 A B

(S_Z)(S+1)=S—2+S+1



As+A+Bs—2B=1
At S = —1,

1=Ja1(3)+1'5a(0)—:uel=1

1=A4(0)+B(-3)> B = —%

AtS = 2,
1 1 3

1 __3 3

s—2)(s+1) s—2 s+1
1 1

_ 3 3
Lx®Ol =5 -537

1 1

)= — 2t — _pt
x(t) 3 € 3€

Practice x/ —4x=cost ,x(0)=0

2.4. Rules of Partial fractions
The table below shows all cases of rational function

Form of the rational function Form of the !]ﬂl"tiﬂl fraction
Px+ q A B
,a* b +
(x—a)(x —b) x—a x—b
Px + q A N B
(x — a)? X—a (x—a)?
pxZ+qgx+r A N B N C
(x—a)(x—b)(x—c) x—a x—b x-c
px* +qx+r A + B n C
(x —a)?(x—b) x—a (x—a) x-b
px?+qx+r A N Bx+C
(x —a)(x? + bx + ¢) x—a x*+bx+c




Example 2.11

Solve the following differential equation by using Laplace transform.
Dx — x = 2sint ,x(0) =0,
Solution
Dx —x = 2sint
L|Dx] — L]|x] = L|2sint]
sLix]—x(0) — L][x] = L[2sin t]

sLix]—0— L[x] =2«
Lix](s—1) =
Lx] =

s24+1

%+ 1

(s2+1)(s—1)

By partial fractions
L] = A _FBs+C

C(s2+1)(s—-1) (s—1) (s2+1)

2=A(s>+1)+ Bs+C(s—1)
2=As’+A+ Bs*+Cs—Bs—C
2=s5*(A+ B)+s(C—B)+(A-0)

A+B=0->A=-B C-B=0-C=B
A-C =2 A=1,B=C=-1

1 —-s—1
Llx] =

G- T¥D

(s—1) (s2+1) (s2+1)

X =£g g VI (e R [(szi 1

x(t) = e' — cost — sint

Lx] =




2.5 special cases

2.5.1 Heaviside unit step

Unit step functions are discontinuous function that
means the function for a domain is different for another
domain for example,

(0 ift<0
f(t)‘{1 ift >0 o

| ————

To represent this function graphically

» 1

To transform the step function by Laplace it to shift the

function C and became
f(t)

0 ift<c I
H(t_c)_{l ift>c - 1
Some reference indicate H(t —c)
asu(t — c)or u,(t) (1)

For Example 1 -
f(t) = 2H(t — 3) means | > Tt

g(t) =3H(t—2)—2H(t — 3) means
f(t)
y,

1 —_—




Example 2.12
Draw the function f() =H({t—1)—H(t— 3)
Solution ()

0 ift<1

H(t—1) J — H(t_1)={1 ift >1
l 1 Tt

T wensf) 452

(1)
Hit—1) —H(t—3) 3

0 t<1 1
Ht—1)—-H(t-3)=1{1 1<t<3 T 3 ¢
t>3

In general if the fungtion
Ht—a)—H(t—b) 0<a<bhb

0 t<a
H(t—a)—H(t—b):ll as<t<b
0 t=b
Notice that if the function
0 t<a
g(t)[H(t—a)—H(t—b)]:!g(t) a<t<b
0 t=b

It is kind of integral of function between [a, b]
For example
f@®) =t?[H({t—1) - H(t - 2)] 1




Example 2.13 f{t)

2
Solution A

1
fo=2¢ —Y 1
fH)=-2t+4 ——
f@&=0
2t 0<t<1
f(©) :l—2t+4 1<t<?2
0 t>3
f(t)=2t[H(t-0)-H(t-1)]+ (-2t + 4)[H(t- 1) - H(t-2)]+ 0[H(t - 2)]
Approve

LIf(t—c)H(t—c)]=e “F(s) ;5s>0
LIf©)=F&) = | e fo)de
0 ,co

LIf(t—c)H(t—c)] = f e f(t—c)H(t— o)dt

0 (1)

f st ft— c)H/‘— o)dt + f Tt f(t— H(t - ¢)dt .
0 C

| C t

=f e*tf(t—c)dt assumeT =t—c andT +c=t,dT =dt

_ J’me—s(ﬂ“ﬂ) f(MdT = J’me_ﬂ e *f(IdT
0 0

e‘“J’me_ﬂf(T)dT = e “F(s)
0



Example 2.13

Find £[¢2H(t — 1)]
Solution
LIL2H(t —1)| = L[f(t — 0)H(t — ©)]

c=1 t*=f(t—c) letT=t-1,T+1=t

T+D*=f@)  sofL|(T+1)?]|=2[f(T)]
£[f(.‘l‘)] 1:[:1‘2 +27 + 1|

== L] = o

, 2 2 1
L.‘T]+2£T]+£[1] e T

2 2 1
LlEHE-1)|=e “(Sz+52+ )

Example 2.14

Find L[(e'+ 1)H(t — 2)]

Solution
Ll[(e"+1DH({t—-2)]=L[f(t—2)H(t—2)]
c=2 e +1=f(t-2)
LetT =t—-2, T+2=t

e:r+2 — f(t _ 2)

e’ +1 = f(T)

T e*+1=f()
F(s) = L[f(T)] = L[e* x e*] + 1:[1

Ll(e*+1DH({t—-2)] =e % (

Ly

1
1

I sk

|



Example 2.15

Solve  y// 1 3y/ + 2y = g(t) = {
Solution
g(t)=H(t)—H({t—10)=1—-H(t—10)

y/! +3y/ + 2y =1—H(t — 10)

Take Laplace for both sides

LIy +3y/ +2y] = £[1—H(t —10)]

Ly + 3L[y] + 2L[y] = L£[1] — L[H(t — 10)]

s2Lly(®)] + sy(0) + y(0)/ + 3[L[y®)] + y(0)]
+ 2L[y(t)] = £[1] — L[H(t — 10)]

Lly®](s*+3s+2) = %— L[H(t —10)]
LI1xH({t—10)] =L[f(t —c)H(t —c)] = e *°F(s)
L1« H(t —10)] = e 10¢ *%

Ly@)(s? + 35 +2) = < (1 - %)

1 toey 1 _10¢
L[y(tjlzs(sz+3s+2)(1_em)_s(s+2)(s+1)(1_em)

1 A B C
S(S+2)(S+1)_;+(S+2)+(S+1)

10=t<10

— /:
0 t>10 YO =y0)=0

A(s+2)(5+1)+Bs(s+2)-|1—65(sl-l—1)=1

Ats=0,—1,—2will’get}l=i,B=E,and(}‘=—1
11 .
_ |2 2 _ _ ,—10s
Ey®Ol=15+Gin Grpt— ™)




1
1|2 2 1 _10s
y(t)_‘cl\ TE (s+1)(1_em)‘

A U 11
|2, 2 P TN S
YO=L v iy T sapl LT (s+(s+2] (s+1])
1 1
242 = F(s) = LIf(£)]
s (s+2) (s+1)
1 1 1 1 1
_ 1 2 2 T T2t
JO=L iy G| T 272¢ ¢

=e *“F(s)=L[f(t—c)H(t — c]

A T
ws[2, 2
IE w (s+(s+2] (s+ 1))

f(t—10) = 1 1 le—zit—lﬂ} _ e (t-10)

2 2

1 1
“1 | 108 2 z 1 _ _ 1,1 50900 10
£tle (s+(s+2] (HU)]—H@ 1uj(2+ze e

1 1 1 1
t)=—+—e 2t —et_H(t—10 ( + —e20t-10) _ —ff—“ﬂ)
f(t) 23 ( ) >
Exercise

// _ :lﬂi:tigﬂ _ / —
Y/ +y=g®={," ;5% y(0) =0, y0) =0



2.5.2 Periodic function

The periodic function is the function that repeats itself
regularly as shown below

function 1 function 2

T -0.5 0 0.5 1 -1 -0.5 0 0.5 1
x in periods X in periods
function 3 function 4

1 1 " .
05 05}
© 0 g 0
0.5 -05 |
=] L " " N 4 -] L " 4

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X in periods X in periods

The period of full cycle on X-axis (t-axis) is donated by T
as shown below.

= t) has d in [0
gt)=gt+T)t>0 9(@) as domain [0, ]

yAWA
s

er)t

_T_

Fig. 7

Laplace of the periodic function is

"e~stg(t)dt
clg(o = 2520

To proof this equation, we need to put the function in the
Laplace form




Proof: .
Llg®) = | e g
T

0 0o

:J; e—“g(t)dt+J’ e *'g(t)dt

T

LetT =t—T ,t=T+T,dT =dt

rT e

= e Stg(t)dt + | e T D g(T + 7)dT
0 0

rT e

= e Stg(t)dt +J e STe 7 g(T)dT

0 0

T

co

= ] e Stg(t)dt + e‘STJ’ e ST g()dT
0 r 0
Llg®)] = J; e s'g(t)dt + e~ L[g(D)]
T

LIg(©O](1 — =T = fﬂ e~ g()dt

fnTe_“g(t)dt

LgOl=—"F——7
Example 2.16
If g(t) has period 2 and g(t) is defined by:

(1ifo<t<i
g(t)_{o if1<t<2

Find L[g(t)]?
Solution —mmm>



Solution g(®)

g(t) = g(t+2) -

f e Stg(t)dt 1 2
[g( )] 1 e —sT )
stgpde [P estg(e)dt
Lig(t)] = fﬁ' — e—sT _fe e 2s
f e St x1dt + fMdt f B—stdt
_ 1 [e¥]q 1 e”°. 1
_1—8_25__5 0_1—8_251—5 ;
1 1—e"] 1 7/
T 1—e2| s _Llf‘/zs)(i‘Fes)[
L{g®)] =

s+ se S

Practice Find

tig@lif g -1\ 15225




5.2.3 Dirac Delta function

Dirac’s delta function is defined by the following

property.
0 t£0
s@=1{, .7, |
t2 f(t) - £(0 o] 2
f s()dt = 1 / / s
t1
UE[tl,tZ] a_ are - a4 arc ™ a t

e—>0.6(t)=% — o ata

It is “infinitely peaked” at t = 0 with the total area of unity.

The important property of the delta function is the
following relation.

f 8(0f (O)dt = £(0)

For any function f(t). This is easy to see. First of all, d(t)
vanishes everywhere except t = 0. Therefore, it does not
matter what values the function f(t) takes except at t = 0.
You can then say f(t)o(t) = f(0) o(t). Then f(0) can be pulled
outside the integral because it does not depend on t, and you
obtain the r.n.s. This equation can easily be generalized to

f 8(Of (¢ — to)dt = f(ty)



For examples

-5

] 7et'cos () 6()dt =7 ,att=0

-5

o )

| 7et"cos (t) 6(t — 2)dt = 7e*cos (2) ,att=2
-5

1
f 7et'cos (£)6(t—2)dt=0 ,att=2
-5

Example 2.17

Solve x//+x=6(t—-m) ,x(0)=x(0) =0
Solution

s?Llx(®)] + sx(0) + x(0) + L[x(D)] = e ™
Llx@®))(s?+1)=e ™

—mns

L) =

Y i
x(t) =L [(Sz_l_l)]—f(t—n)*H(t—n)

Since L[f(t—c)xH(t—c)] = e *°F(s)
It can be compared

- E—JTS B
L 1[(52+1)] = f(t—m)* H(t — m)

L7IF(s)=r1 = sint = f(t)

s2+1

x(t) =sin(t—m)xH(t — )



Example 2.18

Solve x// +x = f(t)

Where f(t) is a hummer hit the system atany¢ = nr n > 0
Solution

Llx(®)](s? + 1) = Z L[8(t — n1)]
n=>0

£lx()] = ) (:2_+ D
n=0

x(t) = Z H(t —nm)sin(t — nm)
n=0

Fornm<t<(n+1)m
x(t) = sint — sint + --- + (—1)"sint

(t) = {sint if niseven
W=1lo if nisodd




5.2.4 Convolution theorem
The general form of convolution

F@©) + g(8) = fﬂ F@)g(t - T)dT

5.2.4.1 Properties

L fxg=g+*f

2. fx(g*xh)=(f+g)*h

3. fx(g+h)=(fxg)+ (f+h)

Laplace transform

LIf(t) + g(©)] = LIf(®O)] + LIg(®)] = F(s) + G(s)
LIf) g®] # LIf(£)]£[g(¢)]

But
LIf®) «g@®)] = LIf(®O]L[g(®)]
Convolution Multiplication

LAF($)G(s)] = F(©) * g(&) = fﬂ F@T)g(t - T)dT



N | =

—

Example 2.19
Find [ ]
Solutlon (s%+1)?

1

£ [(sz + 1)2] £ [(52 +1)(s2+ 1)
Since

_1 _ -
. [(sz n 1)] - st
L1 1 = sint * sint
(s2+1)(s2+1)
~t
= ] sin(T) sin(t — 7)dT
0
Remember

sinasinb = 2 l[cos(b—a) — cos (b+ a)]

t

r [cos(t—2T) — cos(t)|dT

0

Sin(2T — t)] B ltcost
2 0 2

sint Sin(—t)] B ltcost

- 2 2 2

1 1

=3 sint — 2 tcost

Practice: solve

BN = DN

dy

dt ay—e



Chapter three

System of Linear
differential equations
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3.1 Definition

A system of ordinary differential equations is two or
more equations involving the derivatives of two or
more unknown functions of a single independent
variable.

Example:

dx dy

Frie f(x,y,t) and Fri f(x,y,t)
Where t is an independent variable and (x,y) are
dependent variables.

A solution of a system, such as above, is a pair of
differentiable functions x = ¢4(t) and y = ¢,(t) defined
on a common interval | that satisfy each equation of
the system on this interval.

3.2 Solving linear system (Elimination
method)

The elimination method consists in bringing the system
of nth differential equations into a single differential
equation of order n. The following example explains

this.



Example 3.1
Solve the following system of differential equations

dx dy
dt =Y E = 3x
Solution
% = D(Operater)
Dx=y
Dy = 3x

To eliminate (y)
Dx =y (multiply by D)

Dy = 3x

Became
D’x—Dy=0

—3x+Dy=0

By adding the above two equations
D*’x—3x=0

(D2 -3)x=0 the characteristic equation is
m?-3=0 >m; =V3 andm, = -3
x(t) = C;eV3 + Cre V3t

To eliminate (x) recall the main equations

Dx —y =0 (multiply by 3)
—3x+ Dy =0 (multiply by D)



They became
3Dx -3y =0

—3Dx + D*y =0

By adding the above two differential equations and became
(D? —3)y = 0 the characteristic equation is

m?>?-3=0 ->m; =V3 andm, = -3
y(t) = C;eV3t + C e V3t

To find the relations between Cs
From the main equation

dx _
dt 7
ﬁcleﬁt — ﬁcze_ﬂt — CSEVIEI + Cq,e_ﬁt
¢, =V3C, and C, = —V/3C,

The final results
x(t) = CeV3t + Cre V3t

y(t) = V3CeV3t —V3C,e V3t
Practices
Solve the systems of linear differential equations

dx_"-l- + 7 dy_ 2

dx  dy d2x | dx
b) =+ZX=¢t —Z4+Z=-—x-
()d_‘t dt 'odi?  dt y



3.3 Applications of system linear algebra

A linear equation in the variables x,,...,X,, IS an equation
that can be written in the form

ax; +ax, +--+a,x,=b

where b and the coefficients a,,...,a, are real or complex
numbers, usually known in advance. The subscript n may
be any positive integer.

A solution of the system is a list .S¢, S,,...,S,, of numbers
that makes each equation a true statement when the values
.S1,...,S, are substituted for x; X, respectively

For example 1

3

X1 — 2.1'2

—X1 + 3.1'2

The solution of this system is to find x; and x, those satisfy
the both above equations, in other word, the intersection
point is the solution as shown in the figure




Sometime the system does not have a solution as shown
below

(a) x; —2x; = —1 (b) x; —2x, = —1
—X1 + 2.1'3 = 3 —X1 + 2.1';_: = |
62{/' 1 3 gl/ | 3

(a) (b)
Example 3.2
Solve the linear system of equations

x1—2x2+x3=0

sz - 81‘3 =8
le - 5x3 =10
Solution

x1_2x2+x3=0 1 _2 1 0
sz - 81‘3 =8
le - S.X'S =10

(Equation 3)R; - —5R,; + R,

Xq — sz + Xq = 0
sz - 81‘3 =8
10x, — 10x; = 10

10 -10 10



(Equation 2)R,/2
Xq — sz + Xq = 0
xz — 4x3 =4

10x; — 10x3; =10

1 -2 1 0
0O 1 -4 4
0O 10 -10 10

(Equation 3)R; - —10R, + R;

X1 —2x, +x3=0 1 -2 1 0
0O 1 -4 4
O 0 30 =30

xz - 4x3 =4
30x; = —30

1
(Equation 3)R; — 30 R,

x1_2x2+x3=0 1 _2 1 0
x2_4x3=4 g é _14 41

x3=_1

x3=_1
x2_4(_1)=4 — x2=0

x;—2(0)+1(-1)=0 > x; =1
Practice
Solve the following system linear equations

X1 +4x; —2x3 + 8x4 = 12
X, — Tx3 + 2x4

5x3 — x4 = 7

X3 + 3x4 = —5

|
|
B



Temperature distribution can be an application of system
of linear equations

Example 3.3

A steady state temperature distribution of the plate shown
below, find the temperature distribution 7. T, T,and T,

Solution
The heat balance means (steady state)

TI,TZ,ESand T, are became constants. oo
Ty =7[100 +25+T; +T;] s e ]
T, = % [0 +25+ Ty + T4]

T, =%:100+75+T1+T4]
T4=%:0+75+T2+T3]

The equation can be arranged as

AT, —T,—T3+0T, =125 |4 -1 -1 0 125

-1 4 0 -1 25
—T;+4T,+0T3 — T4, =25
1 2 3~ 14 1. 0 4 -1 17%

UTl_TZ_T3+4T4=75

1
(Equ.2)R, - ZRI + R,

1
(Equ.3)R; - ZRI + R,



The system became

15 225 0 15 -1 1 225
0T1+TT2_ZT3_T4:T 4 4 - T
oT 1T 15 T = 825 0 —_1 E 1 825
17 2"'? 17 4 4 4 4
AT —T,—T5+ 0T, =125 4 -1 -1 0 125
5 1 225 15 -1 225
0T+ To =3 Ts —Ta = 4 4 T T4
224 16
0T, + 0T, + 60 Ts—ET4= 210 10 o E —E 210
16 56 60 15
OT:[ + OTz — EZS +ET4 = 90 0 0 _1156 i: 90
(Equ.4)R, > -R; + R,
7 4 -1 -1 0 125
4T1_T2_T3+0T4=125 15 1
5 1 225 1, %%
0T1+_T2__T3_T4:_ 4 4 4
4 4 4
r 224T 16T 210 lo o 224 16
0Ty + 0Ty + T3 — =Ty = 60 BT 210
0 0 0 3.428 150

0T, + 0T, + 0T, + 3.428T, = 150

428T, =150 5 Ty = o

=43.75C°



224T (16
60 3 \15
15

1 225 ]
5 T2 (1) (68.75) — 43.75 =~ — > T, = 31.25C

4T, —31.25-68.754 =125 - T; = 56.25(°
(T, = 56.25C°,T, = 31.25(°, Ty = 68.75(°,T, = 43.75(",)

)(43. 75) = 210 > T4 = 68.75C°

Practice

Find the temperature distribution of the plate below at
steady state case.

20°  20°
& o

| 2

L
.
.
®
I
—
S
O

10°

.
i
%
-
I
—
o
i

10°




3.4 Homogenous linear system differential
equations

|f dx dy
— x4 — =3x+2
dt 2y dt Y

To write it by matrix form
dx

“)-( 20

Iy
X= A X
To solve the system we get

x =2e* and y=3e*

x = 2e't dx _ 8e't
’ dt
dy
=3 4t — =12 4t
y e, dt e

They can be substituted in the main equations
8e* = (2e*) + 2(3e*) - 8e* = Be*

12e* = 3(2e* ) + 2(3e*") - 12e* = 12e*



Example 3.4

Show that X =€,y =2e* (1)
x=e¥, y=et (2

Are the solutions of the following system

4 Y g+
at 7Y dat T
Solution

The first one
ZEZI — 4(82t) . Z(BZI) N ZEZI — ZBZE
4e? =2(e?) +2(e?) - 4e® = 4e?

The second one

3e3t = 4(83t) _ (BSI) - 3e3t = 33t

3e3 =2(e%) + (e3') - 3e3 = 3e

The homogenous linear system can be solved by eigenvalues
and eigenvectors method.
In general

dx

—ax+by Locx+d
dt—ax y dt—(:x y

Or
X=A4X



The solution is

o= (s

k)BM
2 A iIs called Lamda

For system with two dependent variables

Xy = (ﬁ;) et X, = (ﬁ;) etzt

The solution equivalent is

X = K et
X =21K e't

Fromthesystem X=A4 X
Then

AK ett = AKe?t
AK =AK
> AK—2K=0 - KA-2I) =0

Two possibilities
K=0,or (A—A)=0

Det. (A—AI)=0

The solution for A in the characteristic equation
(eigenvalues)

The vectors corresponding with each value of 4
called eigenvectors



Example 3.5
Solve linear system using Eigen value and Eigenvectors
for the homogenous differential equations

4 Y ox+
at 7Y dat T

Solution

- 4 1
X=AX A_(Z 1)
Det. (A—AD =0

pet. (*24 L)=@-na-D-@CD=0

A*-51+6=0

(A—2D) =0

_ _ k — k
(422 1—12):(.&:;):0_}(% _i)(k;):n
2k, —k, = 0
2k, —k, = 0

2k,=k, —atk,=1,k, =2 Eigenvalues

(e



2 =3
(A-2I) =0
(3% )= =0-(G T -0
ki—k,=0
2k, — 2k, =0
k,=k, »atk,=1,k, =1

(e

1
X=Cy(,) e+, (1) e
Example 3.6

Solve linear system using Eigen value and Eigenvectors

for the homogenous differential equations.
dx _ 9 dy

P —=—6x+7y
Solution dt dt
X=AX
(0 2
A_(—ﬁ 7)
Det.(A—a) =0 —=("4 2 )=o

(D)7 =D —-2)(—6)=0—-TA—2 +12=0

A2—72+12=0->(1-3)1-4)=0
A, =3,A, =4 eigenvalues



_3k1 + Zkz =0
_ﬁkl + 4k2 =0
3k, =2k, - atk,=2,k, =3 Eigenvectors k,= (2)

3

(A—ADK =0 - (:‘; 2) (kl) ~0

_4k1 + Zkz =0
_ﬁkl + 3k2 =0

1
2k, =k, »atk,=1,k, =2 Eigenvectors k;, = ( )

2
X=c, @) e + ¢, (;) et



solving systems by Laplace transforms

In additional to solve single differential equation,
Laplace transform method can solve system of
differential equations.

Example 3.7

Solve the system of differential equations by Laplace
transform.
2x' +y/ —y=t x(0)=1
x +y/ =t*, y(0)=0
Solution
Take Laplace transform for both equations
1
2|sLx(t) — x(0)]] + s£LLy(t) — y(0)] — L[y(0)] = =
2
sL[x(8) = x(0)] + sLIY(D) — y(0)] = 5

Then 1
2sLix(®O] + (s - DLYy®] =2+ 3

2 (Sﬁ[x(t)] +sLiy(t)] =1+ %) (Multiply by 2)

By subtraction the two equation
1 4
(s=1-25)Lly(®] =5~

s s3
s

(=s—DLy(®)] =

3



4—s
Lly®] = (s +1)s3
By partial fraction
4 —5s A B C D

GrDs? s 27376+

4=As*(s+1)+Bs(s+1)+C(s+1)+Ds?
A+D=0

A+B=0
B+C=-1
C=4-B=-5A=5andD =-5
5 4 5
£[y(t)]___sz+s3_s+1
5 4 5
) =L1]|=— -
y(®) S 52+S3 s+1

y(t) =5 — 5t + 2t*—5e*

Recall the equation

sLix(t)| — 1+ sLly(t)] = % (divide by s)
1

Llx(®)] = <+ - LIy(®)]

) R

S

S 52+S3_S+1

t* —|5—5t+ 2t — 5¢7]

1
x(t) = —4+ 5t —2t* + §t3 + Set



Sheet 3

1- Solve the following systems linear differential equations
(by elimination)

dx dy
(a) E— -9y, E_ —4.x
dx dy
. x— t har” A
(b) = x y+et, ey x+ 3y
dx dy
(C)E_y_ ’ E_x-l_t

2- Solve the following systems linear following homogenous
differential equations ( by eigenvalues and eigenvectors
methods)

d
(@) 7=

(b) F(:H —2lx

d
5x + 2y, d—i]=2x++5y

3- Solve the following systems linear differential equations
(by using Laplace transform)

dx dy
S — et _ — -t — —
(a) i +y=¢e", it x=3e ', x(0)=0y(0)=1

dx dy



Chapter Four

Partial Differential
equations

ou 0°u

a :&83;2 | f(t,iB)




4.1 What is the Partial differential equations

The key defining property of a partial differential
equation (PDE) is that there is more than one
Independent variable X, vy,... There is a dependent
variable that is an unknown function of these variables
uix, v, . . . ). We will often denote its derivatives by
subscripts; thus du/dx = ux , and so on. A PDE is an
iIdentity that relates the independent variables, the
dependent variable u, and the partial derivatives of u.
It can be written as

The general Form

F( ou du Jdu 02u )_0
TV Ox, 0x, 0xy 0x,0x," )

Notation that

Ju J02u d (61{)

" T 9x and uyy = dxdy - dy \0x



4.2 Classification of PDEs (Linear or Nonlinear
4.2.1 Linear equation
The general form

a;(x,y)u, + a,(x,y)u, =0 (homogenous)
a(x,y)u, + a;(x,y)u, = f(x,5) (non homogenous)

4.2.2 Quasilinear equation (Non-Linear)
The general form

al(x! Y, u)ux + ﬂz(x, Y, u)uy =0

(homogenous)

H’l(xl Y, u)ux + ﬂz(x, Y u)uy = f(xl y)
(non homogenous)



4.3 Some famous equations (Linear & 2"d Order)

1 02u c? d2u (1D tiom)
3z = C 3.2 wave equation
6u_ c? d02u (1D Heat tiom)
5 = ¢ a2 eat equation
d02u N d02u —0 (2D Lapl tion)
T T aplace equation
02u N 02u (2D tiom)
T2 Ty =f(x,y) poison equation

d2u d2u 02u

5— Fre C(é‘xz + ﬂyz) (2D wave equation)

ﬂZu d2u 0d2u

i ﬂy + 3z =0 (3D Laplace equation)




Example 4.1

The 2D Laplace equation is

d2u N d2u o
axz  ay?

This equation has multiple solutions as

u(x,y) = x% + y?

u(x,y) = e*cosy

u(x,y) = lll(sllc2 + yz)

All these solutions satisfy the equation and more
solutions can be generated,

u(x,y) = Cquy + Cou, + Cyuz + -

This solution could be as

N
u(x,y) = Z C,u,
n=1



Example 4.2

Solve 92E 1 92E

x2 _ C2 9t

Solution
Assume the general solution is E(x,t) = R(x)K(t)

02E _ . 92R(x) and  g2F ey 92K @)

oz~ KO 52 oz ~ RX) 55
d2R(x) 1 92K (1)

K= =z R =5

The goal now is to separate the }wo function R(x) and K(t)
By multiply both sides by the equation becomes

R(x)K(t)

1 02R(x) 1 1 92K(¢)
R(x) 9x2  C2K(t) Ot?

Now, we can vary (X) on the left side without changing the right
side and at the same time we can change (t) on the left side
without changing the right side,

That means both sides are constant

1 32R(x) 1 1 32K
R(0) 022 = (constant) and O

= (constant)

Both equations above became Ordinary differential equations

They can be solved and the solution is
E(x,t) = R(x)K(t)



Example 4.3
02u  02E

Solve the following PDE — =4 —
Solution 0x Iy

Assume the general solution is
u(x,y) = R(x)K(y)

02R 02K
KT = 4R Y

By separation
1 02R(x) 1 O0K(x)
4R(x) 0x2 K(y) 9y

1_02R™) _ 1 OK() _
R(x) ox2 k() 9y

—A 2 (Separation constant)

R(x)/ +4AR(x)=0 ,4d K@)/ +2K(y)=0

3 cases of A
A=0o0r <0o0r >0

Casel 5 — o
02R(x) JR(x _
=0 63([ ) _ ¢, R@®=Cix+C,
0K (y)
oy 0 K(y)=0C;3

u(x,y) = R(x)K(y) = (Cyx + C;)C3
u(x,y) =A{x+ B,



Case2 A< O

A= —a?
R(x) —4a’R(x) =0 and K(y) —a’K(y) =0

m=t+2a m = a?
R(x) = Cue 2% + C5e?™,  K(y) = Coe™?
u(x,y) = ROK(G) = (Cre72 + C5e27%) (Coe™)

_ 2 2
u(x, y) — AZB 2ax+a“y + 3282ax+a ¥y

Case3 4A>0
A= a?
R(x) + 4a’R(x) =0 and K(y) + a’K(y) =0
m = +2ai m = —a?

R(x) = C;cos 2ax+ Cgsin2ax, K(y) = Coe ™7

u(x,y) = A;e 2 cos2ax + Bye %Y sin2ay

Practice
1- Solve x@ — ou
0x dt
2-Solve 92U _ Ju
dx? Ot

B 1 (x—x,+2t)?
3- Show that %(*®) = exp (_m at )

Is a solution for 9% _92% 0% (Challenge)
dt 0x? dx




